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The form of the anisotropy for which an accurate solution is constructed for the stress and displacement of fimetions in the form 
of an infinite integral operator is established for the shear modulus, represented in the form of the product of continuous functions 
of two cylindrical coordinates of an orthotropic cylinder. This operator contains an arbitrary function of the complex variable, 
in addition to well-known functions. For power and exponential-power inhomogcneities, the case in which the operator degenerates 
into a monomial is distinguished, and, using this as an example, the problem is solved for a hollow cylinder with mixed boundary 
conditions. 

1. I N I T I A L  E Q U A T I O N S  

Pure torsion of an orthotropic solid of revolution, the anisotropy axis of which coincides with the 
geometrical axis of symmetry of the solid, in cylindrical coordinates r, 0, z, is represented by a system 
of partial differential equations of elliptic type with variable coefficients [1, 2] 

a~ar P(r'Z)~zz =0' a~ (1.1) 

P=r3Gl ( r , z ) ,  Q=r3G2(r , z )  

Here ¥ is the stress function, 9 is the displacement function, and G0~ = Gl(r, z), G,o = G2(r,  z) are 
the shear moduli. 

The components of the stresses x0z = xl(r, z), %0 = x2(r, z), the displacement uo = u(r, z) and the 
resultant torque M at the ends of the solid are defined by the equations 

I 0• ~ l c~v/=rG2 0¢ 
T , = - 7 ~ r  = rGI _ . '  Z2 = r 2 ~gz o~"-'~" (1.2) 

R 
u0 = tV, M=2nfr2xldr=2n[~(R,z)-¥(O,z)] 

0 

When z = 0 and z = H (where R and H are the radius and length of the circular cylinder) we obtain 
the conditions at the ends. 

When the shear modulus varies as a function of the radius only, solutions have been constructed using 
the method of separation of variables [1, 2] and another method [3] for particular forms of the shear 
modulus, and general solutions [4, 5] in the form of integral and differential complex series for arbitrarily 
specified moduli of the radius Gl(r) and G2(r). A self-similar solution for the stress function ¥ = ¥(r/z) 
was obtained in [2] for a circular isotropically inhomogeneous cone for particular forms of the moduli 
G2 = cG1 (c = const), which depend on the two coordinates r and z. 

We will construct new solutions for the torsion of a circular cylinder when the shear moduli can be 
represented in the form of functions of two coordinates 

Gl = ClPl (~)ql ('q), G2 = c2P2 (~)q2 ('q) (1.3) 
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where cl and c2 are arbitrary dimensional constants, and Pl, P2, ql and q2 are arbitrary continuous 
functions of the arguments 

~=r/R, TI=(z+H)/H (1.4) 

We will now write the system of equations (1.1) in the form 

a9 a¥ 2 3 a9 H~¥=clR4~3Plqla~ i)ll' ~I l =-c2R H~ P2q2-~ (1.5) 

Eliminating 9 and ¥, we obtain two dimensionless second-order differential equations equivalent to 
system (1.5), which henceforth will be fundamental 

~3 a( o~'~+ 2 a / - l  p2"~LN'~] a q|-~Lq2--~)=0 (1.6) 

q2 --~) a ~ p,--~Lq,~]=O (1.7, 

Here 

N=~-3p/I, a 2 =Cl R2 1(C2 H2) (1.8) 

(a is a dimensionless constant). 

2. METHOD OF SOLUTION 

We will take the equation for the stresses (1.6) as the initial equation. By analogy with the construction 
of the solution for a second-order ordinary differential equation with variable coefficients in the form 
of arbitrary series, each term of which is defined in terms of the previous term and, in the final analysis, 
all the terms of the series are expressed by corresponding quadratures, which depend on the coefficients 
of the initial equation and the initial conditions [6, p. 261]. We will seek the function ~ in the form 

(2.1) 

C=u+iv, u=Jp,(~)d~, o=lp2(n)dn (2.2) 

The summation in (2.1) is carried out from k = 0 to k = *0, Wk(~) are arbitrary analytic functions of 
the complex variables ~, and tZk, lSk, Pl, P2 are the simplest (particular) values of the functions for which 
Eq. (1.6) is satisfied. 

We will introduce the corresponding derivatives of (2.1) and (2.2) into Eq. (1.6) and group terms. 
As a result we obtain an equation which we will write as follows: 

~,[~3 p2fJk ( Ntx'k' + ~tX'k )+ a2 q,q22txkA,('q)~k + 

+~{~'P2[$lI2plNot'k+(Pl-~+Np~lO~,]+a2qlq220~kA2(rl)}w'k+Ao(~,rl':~l[~kw'k'=O (2.3) 

A, (rl)= q2l~'-q~, Ao = P---Lp~ - a2ql p 2 
P~ q2 

A2 : i[2p2q213~, + (qzP~ - P2q~)13k ] 

(2.4) 

The function A0(~, TI). is independent of the summation sign, AI(~I) is a real function and A2(1]) is a 
pure imaginary expression. 

Assuming A0 = 0, we express Pl and P2 in the form 
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(2.5) 

From the equations A1 = 0 and A2 = 0, after integration and using expressions (2.5), we obtain the 
following connecting relations for 13k 

~k =AkJq2dq=Bk(qlq2) ¼ (k =0,1,2...) (2.6) 

Equations (2.6) will be equivalent, for example, in the following cases. 
1. A power relationship 

q1=I] v, q2=1] ~ (v=311+4) (2.7) 

(v and g are rational numbers). 
In (2.6), by a suitable choice of the constants of integrationAk and B k w e  Call always arrange for the 

following equalities to be satisfied 

yak = Bk =l  (k = 0,1,2...) 

(yis a constant which appears as a result of evaluating the integral). Here it is important that the function 
13k becomes independent of the summation index. 

In this case we obtain 

~k=~=TlJ*+l, A,/(~+I)=Bk=I (k=0,1,2...) (2.8) 

2. Power functions 

qm = bVn, q2 = ban, ~ = b~m (v = 3~t) (2.9) 

(b is an arbitrary positive number including the exponent). 
This list can be continued; for example, for the functions ql = rl lnVrl, q2 = 1] - 1  1111'11, V = 311 + 4 we 

obtain 13 = In ~t ÷ lrl. 
The functions (2.8) and (2.9) can be used to confirm the corresponding experimental relationships. 
Taking into account the fact that all A/are equal to zero in (2.4), and I~k = 13 in (2.8) and (2.9) is 

independent of the index of summation, we can take the quantity ~°p213 outside the summation sign 
and shorten it, and impose the following conditions on the remaining terms 

dN , 
2p, Noc~ + (P, "~-+ Np, lot o =0 (2.10) 

2piNct~ + p, ~-+Np, ¢t, :-~ct,_, +Nctk"_i 

w~ =-w,_ 1 (k = 1,2,...) 

(2.11) 

(2.12) 

For these equalities, Eq. (2.3) is satisfied identically. 
It follows from (2.12) that 

(2.13) 
~ - . . ~ . . , ,  - -  - -  

, 

Here w(~) = w0(~) is an arbitrary analytic function of the complex variable ~ defined in (2.2). 
We obtain from Eq. (2.10) 

tx° = A° (--~-=11 (2.14) 

Note that the homogeneous part of Eq. (2.11) has the same form as Eq. (2.10), while the right-hand 
side is a well-known function, defined along the "chain" from the preceding to the next equation. In 
the final analysis this homogeneous part is predetermined by the function (2.14). 
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Using the method of variation of the constant of integration in the solution for the homogeneous 
part of the equation, we obtain a particular solution of the inhomogeneous equation (2.11), which can 
be written in the form 

cx t = e-IQa~ ~ Rt-i (~)el~'d~ (2.15) 

where 

1 dlnNpl _ 1 ( d l n N a ,  +(1~_1 ] 
, , - i  (k= 1,2...) (2.16) ) 

Knowing (2.15) and 1~ in (2.8) and (2.9), taking (2.13) into account, we will write the series (2.1) in 
the form of a sign-varying integral operator of the type [7, 8] 

v = fiX,(-1)* a ,  f w(g)d, k (2.17) 

Here we have introduced the conventional form of writing the k-tuple integral (2.13). When k = 0 we 
have f ~ r 0  _ w(~). 

The real and imaginary parts of (2.17) and their linear combination are real solutions of F_x]. (1.6). 
S~ ' i fy ing the function w(~) arbitrarily we obtain inverse boundary-value problems, some of which turn 
out to be suitable in practice. When solving direct boundary-value problems we take the function w in 
the form of a converging exponential series 

w = F, Ane "OK + B,e -n°K (2.18) 

in which co, An, Bn are arbitrary real (in general, complex) constants, determined from the boundary 
conditions of the specific problem. 

Here the summation, as always henceforth, is carried out from n = 1 to n = **. 
Note that the functions (2.1) can also be specified in differential form, similar to that in [8], if in 

Eq. (2.3), together with A/= 0 (2.4), instead of (2.10)-(2.12), we impose conditions of the form 

Nct~+ N'ct~ = O, ao=S~3p2(~)d~ 

NO(~ + N'a', = 2plNa'kq +(piN'+ Np~ )a,_ 1 (2.19) 

wk=-w'~_ 1, (k=l,2.. .) 

which we will not consider in detail. 

3. A POWER I N H O M O G E N E I T Y  

We will consider, as an example, the case of a power relationship 

Pl =~P, P2 =~q 

wherep and q are rational numbers. 
In this ease, from (2.14)--(2.15) we obtain the equations 

( 3)  
Ot O=~m, Q=_m~-I m= P+q4 +2 

I r.(q-p)12 [(Xst 
Rt-t = ~-% t-I - (P+ 3)~-I~k-I ] 

For k = 1 we obtain 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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Ro=A~ ~, o h = B ~  t, A = 2 ( m - p - 4 )  

B = A l ( n - m + l ) ,  n = l ( 3 q - p - 2 ) ,  t = n + l - m  
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(3.5) 

For k = 2 we will have 

1 ot2=D~ s, s = - ~ ( 5 q - 3 p + 2 ) ,  D= B ( m + l ) ( n - p - 3 )  (3.6) 
2 ( n - m ) + q - p  

This process can be continued and a recurrence relation can be established for o.!,. 
It follows from (3.5) and (3.6) that i fA = 0, i.e. m = 0 (q = -p  - 6) or m = p + 4 (q = 3p + 10), 

series (2.17) is discontinued at the first term. I fB ¢ 0, m = -1 o rn  = p  + 3 (q = (5p + 14)/3), it becomes 
a two-term expression and so on. In each individual case the question of the convergence of series (2.17) 
does not arise. 

We will consider in more detail the imaginary part of (2.18) and the case when m = p + 4, while the 
value of  13 is determined from one of the formulae (2.8) and (2.9). 

In this case, for ~ in the form (2.8), the moduli (1.4) and the function ~ (2.17) take the form 

G 1 = cI~P$] 31t+4, G 2 = c2~3p+10~1 t 

= ~P+4rl~t+l ~,(Ane nm - B,e -n°~ )sin noru 

u = -  1 ~ - ( p + 4 )  1.) = - -  • l ] ] - (11+1)  

p + 4 -  ' la+l 

(3.7) 

(3.8) 

Introducing the function (3.8) into the system of equations (1.5) we obtain, in the usual way, the 
displacement function 

q~= p+: ~, 1 ~ [AnenO~U(no~u_l)+ 
c2R'H (no~)" 

+ Bne-n°U ( no~u + l ) ][ (I.t + l )sin no.-'u + n~a ~t  +l cos noru ] 

For the case when the quantity 13 is defined by (2.9), i.e. for the modulus (1.3) 

(3.9) 

Gl = ci~P e 3jm, G2 = c2~3t'+l° e~trl (3.10) 

we obtain that the functions ¥ and cp in (3.8) and (3.9) will have the same form as for (2.9) with the 
sole difference that instead of the function rl ~t+1 we must introduce the expression for e~n and 
replace the factor (~t + 1) by ~t with sin non~. The variable u then remains unchanged while ~ = 

Note that, in the first case (2.8) for u = - (~  = a-qn 11) and in the second case (2.9) for ~t = 0 
(~ = rl/a), formulae (3.8) and (3.9) are simplified and are identical with one another (taking into account, 
of  course, the different expressions for the variable ~), namely 

W = ~P~ Y.(A~ enm - B,e - ~  )sin noro 

p + 4  1 n~ c O = ~ Y . - ~ - - ~ [ a n e  (no~u-l)+Bne-~°~U(no~u+l)]cosno~ (3.11) 

(the value of the constant a in (1.8) is taken into account). Here, for the case (2.8) we must take 
= a-lln 11, while for the case (2.9) we must take u = rl/a. 
By substituting (3.11) into (1.5)-(1.7) it can be shown that they are satisfied for cases (3.7) and (3.10). 
To abbreviate the notation we will confine ourselves to (3.11) and (2.8), and we will write for these 

the stresses (1.2), determined from one of the formulae (3.11) 
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t I = - .P~R4~ p+l ~.[Ane a=  (no~u - 1) + Bne - " =  ( n ~ u  + 1)]sin non~ 

t2 = _ C~2 r1-1 ~ p+ 2 ~. noJ( Ane n ~ _ Bae-nO~ ) cos no~t~ 
c ]  

Correspondingly ,  the  d i sp lacement  u0 (1.2) is also def ined in t e rms  o f  (3.11). 

(3 .12 )  

4. A B O U N D A R Y - V A L U E  P R O B L E M  

Using the example of (3.11 ) we consider a problem with mixed boundary conditions for a coaxial hollow circular 
cylinder of radii R and RI (R > R 0,  the ends of which are free from forces under the following conditions. 

Whenz  = 0 (¢1 = 1),z =//(11 = 2) 

ihlel 
Xl=0,-~-~1 =0 (4.1) 

TI=I,11=2 

When r ffi R(~ = 1) 

~2 = -R-2H-I~ -2 ~-~'[ ---- J~ ( 1 ] )  ~ql~=! 

I ) r ffi R l ~t - R2 < 1 uo - RE~cPle~=Ej = f2 01) 

(4.2) 

Here f l  and f2 are specified piecewise-continuous functions, bounded in the interval T I e (1.2). 
If we put o) = ax/ln 2 for the case (2.8) and take o) = 2az for the case (2.9), conditions (4.1) for the functions 

¥ (3.11) are satisfied. To satisfy conditions (4.2) we expand the functions fl  and f2 in Fourier series in cos no~  in 
the interval ~) E (0, In 2), and using Fourier's method, we obtain the equalities 

no)( Ane c - Bn e-c ) = D n , h ! Ane n°~l + h2Bne -n°~ = no)E n 

from which we obtain the formulae 

A n = A  I / A ,  B n = A  2 / A ,  A ! = h 2 e - n ~ l l ~ + ( n c o ) 2 e - C E  n 

A 2 = (noj)2eCEn - hie nojui D n, A = (n60)(h2e c - n ~  + hie noJul-c) ;e 0 (4.3) 

Here  Dn and En are the known coefficients of the expansion of the functions ~1(~) and ~2(TI) in Fourier series 

2 b 
E n , O n = --. J Oi ( ea~ ) cos r ~ d ~  

bo 

and we have introduced the notation 

( i  = 1,2) (4.4) 

no) b=  In2 h I =n01u I -1 ,  h 2 =nmu! +1 C = - p + 4 "  a ' 

~-(p+4) R 2 
ut = -  p + 4  ' ~1 =-R2H~I(~]) ,  q~2 = (p+4)H~! f2(¢1) (4.5) 

The problem is simplified for a continuous cylinder. In this case, depending on what is specified on the surface 
(the stress or the displacement), we use one of the functions (3.11), in which we must put the constant An or Bn 
equal to zero as being redundant. 

Note that it follows from (3.12) and p > 0 for problem (4.1) and (4.2), that, compared with the internal section 
(~ < 1), the largest stresses occur at the point of the external contour (~ = 1) and x2 decreases in modulus from 
the end z = 0 (11 = 1) to the end z = H (11 = 2). For a thin section (R = R1, ~1 ~ 1) the stresses are approaimately 
equal at points of the internal and external contours. This agrees with the aonclnsions for the homogeneous case. 
Similar conclusions apply to the displacements, which follows from (1.2) and 0.11). 
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